首页
科学研究
研究领域
论文成果
专利
著作成果
科研项目
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
我的相册
教师博客
扫描手机二维码
欢迎您的访问
您是第
位访客
开通时间:
.
.
最后更新时间:
.
.
登录
English
|
手机版
郑泽敏
( 教授 )
的个人主页 http://faculty.ustc.edu.cn/zhengzemin/zh_CN/index.htm
教授
电子邮箱:
4734ac0cf79ab55688fcc65c9a6a1fafd25e6ea730e3bdd9e178be5530b186c531ad1e5c858c394e1c6b9ca53246adde3d9bb37b26a4b58f19850d563ee3b69b48222b13eb5b1598569382cba97f1e778eb3ebf1bc694f03d4bcde5954348ccf98f1b018f42bcb1d0e10763e9cf00ee70e49865bc0188dbb642130c61921d2dc
办公地点:
Room 1021, The School of Management
学位:
博士
论文成果
当前位置:
中文主页
>>
科学研究
>>
论文成果
[1]
High-dimensional statistical inference via DATE, Communications in Statistics- Theory and Methods, 2021.
[2]
Zheng, Z.*, Lv, J. and Lin, W. (2021). Nonsparse learning with latent variables. Operations Research 69(1), 346-359.
[3]
Dong, R., Li, D. and Zheng, Z.* (2021). Parallel integrative learning for large-scale multi-response regression with incomplete outcomes. Computational Statistics & Data Analysis 160, 107243.
[4]
Zhou, J., Zheng, Z.*, Zhou, H. and Dong, R. (2021). Innovated scalable efficient inference for ultra-large graphical models. Statistics & Probability Letters 173, 109085.
[5]
Zheng, Z., Li, Y., Wu, J.* and Wang, Y. (2020). Sequential scaled sparse factor regression. Journal of Business & Economic Statistics, DOI: 10.1080/07350015.2020.1844212.
[6]
Zheng, Z., Zhang, J.*, Li, Y. and Wu, Y. (2020). Partitioned approach for high-dimensional confidence intervals with large split sizes. Statistica Sinica, DOI: 10.5705/ss.202018.0379.
[7]
Zheng, Z., Shi, H., Li, Y.* and Yuan, H. (2020). Uniform joint screening for ultra-high dimensional graphical models. Journal of Multivariate Analysis 179, 104645.
[8]
Wu, J., Zheng, Z.*, Li, Y. and Zhang, Y. (2020). Scalable interpretable learning for multi-response error-in-variables regression. Journal of Multivariate Analysis 179, 104644.
[9]
Zheng, Z., Li, L., Zhou, J.* and Kong, Y. (2020). Innovated scalable dynamic learning for time-varying graphical models. Statistics & Probability Letters 165, 108843.
[10]
Zheng, Z.*, Bahadori, M. T., Liu, Y. and Lv, J. (2019). Scalable interpretable multi-response regression via SEED. Journal of Machine Learning Research 20, 1-34.
共15条 1/2
首页
上页
下页
尾页
页
版权所有 ©2020 中国科学技术大学
地址:安徽省合肥市金寨路 96 号,邮政编码:230026